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A. INTRODUCTION

The period November 1973 to October 1974 has been one of solid progress

for the Stanford Gyro Relativity program. Since the first low temperature

spin tests of the quartz gyro rotor in June 1973 we have concentrated a

large effort on gyro operations and gyro readout development We have

now accumulated about 400 hours of gyro testing at liquid helium tempera-

tures with spin speeds up to 30 Hz. Readout by observing trapped magnetic

flux in the spinning rotor by means of the sensitive SQUID magnetometer is

now a routine matter. We have made great progress towards developing the

full London moment gyro readout.

A full description of the gyro and readout developments is given in

sections B, C, and D below, along with a discussion of the remaining

tasks in obtaining London moment readout. The following are highlights

in the development this year:

November 1973 first operation of SQUID magnetometer with the

rf/ feedback loop closed and locked while the gyro

was suspended

Januar 1974-2
January 1974 reduction of field levels in dewar from 10- 2 gauss

to 10 gauss

March 1974 first operation of SQUID magnetometer with gyro spinning

April 1974 trapped flux readout and cancellation tests

July 1974 field cancellation to 2 X 10 5 gauss achieved;

gyro spin speed raised to 30 Hz

October 1974 null drift in gyro readout reduced nearly two
-6

orders of magnitude down to a level of 10 gauss,

i.e. a factor of 20 below the Londom moment at 30 Hz.
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The gyro readout tests with the ceramic gyro housing have provided

the main thrust of our research this year, but we have done other tasks

as follows.

1. sputtering work

2. dewar improvements

35. fixed base simulator

4. construction of star/collimator unit

5. quartz gyro housings

6. equivalence principle accelerometer

In addition to the laboratory experiment we have continued to work on

the flight program. In last years Annual Report we described the

prospects for a preliminary relativity experiment of 0.1 arc-second/year

accuracy to be launched on a Scout vehicle under the Explorer program.

A study of the Scout mission was completed for NASA by Ball Brothers

Research Corporation in June 1973 (BBRC Report F73/03). Although the

Scout mission has merits, weight and cost are a problem, and further

study has persuaded us that a more hopeful prospect for the first flight

lies in a Delta or Shuttle launch of an Q.01 arc-second/year experiment.

This would offer a higher scientific payoff, but could still be performed

at tolerable cost, and it might allow NASA to add inexpensive guest ex-

periments to the spacecraft. We recently submitted a proposal in response

to AO#6 to define such a mission.

Contributors to the present Report are: J. T. Anderson (sections D,E),

R. R. Clappier (section D), D. B. DeBra for D. Klinger(section K ),

J. A. Lipa (sections B,C,J ), J. R. Nikirk (sections B,F and Appendix),

F. J. van Kann (sections G,H), R. A. Van Patten (section F), P. W. Worden,Jr.

(Appendix).
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B. GYROSCOPE OPERATIONS AND APPROACH TO THE LONDON MOMENT READOUT

Research on gyro readout is described both here and in sections C and D.

This section concentrates on questions related to the cryogenic system

and gyroscope; section C on field cancellation techniques, section D

on magnetometry.

Detection of the London moment in the Relativity Gyroscope means observa-

tion of a magnetic field of about 10- 4 gauss over a region of about 11 cm2

with a ball speed of 200 Hz. This would appear to be a fairly straight-

forward task, given commercially available magnetometers with sensitivities

-11 2
up to 10 gauss - cm . Further we have always maintained it is possible

to resolve the London moment to better than one part in 108 which corresponds

to a 0.001 arc-second experiment. Our problem for the past eighteen months

has been to reduce the sources of spurious signals to the point where we

can deal with them and generate the London moment signal as output. Once

this stage is reached we will be able to use our experience to build up the

more sophisticated systems which we have argued all along will produce the

ultimate accuracy.

First of all, in the present phase of development we must accept a

penalty in the size of the signal to be detected, for three distinct

reasons:

a) Since we have only one finished gyro housing, we dare not risk high

speed gyro operations which might damage it. Accordingly we limit our-

selves to a maximum spin speed of about 30 Hz as compared with 200 Hz

for the final gyroscope We have observed that setting the ball down at

speeds greater than 15 Hz generates visible abrasion marks on the surface,

though not bad enough to hamper further spin tests. Once a set-down at

30 Hz caused the metal coating to break away from the quartz over an

area of about 0.2 cm2. After such set-downs the spin-up lands in the



housing look unusually well polished, indicating abrasion we would

sooner avoid. Although we do often have many hours of trouble-free opera-

tion with the gyro suspended, we still occasionally have unexplained shut-

downs that apparently originate in the gyro. The limitation of speed reduces

the signal because the London moment is proportional to spin speed.

b) We cannot yet use readout loops very close to the ball. One such

loop is available, but it is a delicate task to join the SQUID to the

fragile leads, and a big job to replace the leads if one is damaged. We

use instead a wire wound around the housing. This causes a loss of about

30 % in sensitivity, and the system is appreciably more sensitive to

fluctuations in the ambient fields. The combination of (a) and (b) means

that our effective signal in the readout loop is about 1.5 X 10- 5 gauss.

c) The third penalty occurs when the signal is fed into the SQUID input

coil. For magnetometer configurations like ours there is an inherent

inductance mismatch between the input coil and the readout loop. The

resulting signal reduction in our case is presently a factor of approxi-

mately 1000. Ultimately we expect to be able to reduce this to a factor

of 100. For the present it is not a significant problem because all

signals detected by the readout loop are similarly affected, the main

result being to raise the apparent SQUID noise figure with respect to the

London moment.

Given a spinning gyro and a magnetometer of adequate inherent sensitivity

we face three main problems in detecting the London moment:

(1) operation of the magnetometer in the presence of gyro suspension signals

(2) reduction of trapped magnetic flux in the gyro rotor to a level at or
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below the 1.3 X 10- 5 gauss London moment signal.

(3) elimination of magnetometer null drift and of varying magnetic

fields, in particular, of fields generated by thermoelectric currents

caused by temperature gradients in the experimental chamber.

The first problem has been completely solved as explained in section D.

The second problem is not completely solved; but we have made enough

progress to reduce the trapped flux levels to 2 X 10- 5 gauss, which is

sufficient to demonstrate the London moment readout. See section C.

Temperature gradients in the experimental chamber have two sources:

(a) the high heat load into the experimental chamber which seems to come

from having inadequate radiation traps in the dewar neck-tube,

(b) heat dissipation in the gyro housing caused by the combination of

the rather high electrical resistance of the gyro electrodes and the

high suspension currents required to support the gyro rotor on earth.

The root of the first trouble is the neck-tube itself, which has inade-

quate provision for heat-sinking the radiation baffles to the cooling-

coils for the boil-off gas. We have now built a completely redesigned

neck-tube, which is ready for installation. To solve the gyro dissipation

we have decided on the drastic step of coating the electrodes with super-

conductor. Doing so will cause some distortion of the London moment field;

eventually we will probably revert to ordinary conductors, but at present

the use of superconducting electrodes seems to be the best step.
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The reduction in temperature gradients in the experimental chamber

should substantially reduce fluctuations in the ambient magnetic field,

improving both the readout null stability and also the prospects of

reducing trapped flux by the field cancellation techniques to be described

in section C. Reduction of the heat dissipation in the gyro itself has

another important advantage. Under the present operating conditions the

dissipation tends to warm up the gyro and drive the superconducting rotor

normal. To prevent this exchange gas has to be present in the experimental

chamber at a fairly high pressure (about 10-4 torr); and gaseous friction

then decelerates the gyro rotor with an exponential spin-down time of a

few hours. With the new electrodes we shall be able to work at much

lower pressures.

When trapped flux is present in the ball the readout signal over any short

interval is a combination of an a.c. component of trapped flux perpendicular

to the spin axis, a d.c. component of trapped flux parallel to the spin

axis, and the London moment signal also parallel to the spin axis. The

trapped flux is tied to the body axes of the ball, so the amplitudes of

the a.c. and d.c. components slowly vary as the ball describes its polhode

motions. The London moment is, of course, always aligned with the spin

axis. At present trapped flux levels three methods exist for reading

out the London moment signal, depending on the amount of auxiliary informa-

tion that is available on the motion of the ball's spin axis.

(1) If the ball can be made to precess about the vertical axis at a rate

fast compared with polhode rate (as happened for three out of four runs

this year) the d.c. component of trapped flux can be subtracted out when
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when the a.c. signal has its first null. The remainder is the London

moment signal. This method requires one magnetometer and a readout

loop having its normal horizontal and at right angles to the spin axis.

(2) If the ball spins down before its has precessed through an appreciable

angle, the change in amplitude of the a.c. signal can be used to correct the

d.c. signal for changes in the spin axis. The London moment signal would

then remain as a function of spin speed. This method requires a loop with

its normal parallel to the spin axis.

(3) With a complete three axis magnetometer readout system, enough informa-

tion is available to subtract out the trapped flux signal for an arbitrary

location of the spin axis and an arbitrary angle between the spin axis and

the trapped flux vector.

In the runs made since April 1974 we have concentrated all our efforts on

method (1) for three reasons: (a) the readout magnetometer system was

undergoing rapid development so that it was imprudent to build three

units, (b) from observations with our auxiliary, low sensitivity, fluxgate

readout system (which is a three axis system) we knew that the precession

of the existing ball was fast and in the horizontal plane; (c) method (2)

was excluded because only recently have we become able to guarantee null

stability of the readout through the spin-down period.

Most recently we have decided to change over to the three axis readout

which will allow any of the above methods to be implemented. Our expecta-

tion is to see the London moment signal first by method (3). This is

because we only need null stability in one readout magnetometer (the existing

one) to see the signal; the essential information from the other two read-
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outs being a.c. We still need a moderate range of precession, say

30 to 450 before spin down, but this should be easily obtained with a

deliberately unbalanced rotor.

C. MAGNETIC SHIELDING AND REDUCTION OF TRAPPED FLUX

IN THE GYRO ROTOR

For the final relativity experiment the trapped magnetic field in the

gyro rotor must be reduced to levels between 106 and 10 gauss. Our

plan for getting the low field depends on combined use of Mu-metals

shields and of the special properties of superconductors, including, if

necessary, use of the novel "expanding balloon" technique described in

previous reports. During the past year we have made good progress both

in the expanding balloon technique and in obtaining low fields by con-

ventional means in our main laboratory dewar.

Work on the expanding balloon technique has proceeded under separate

funding. The most important result has been to extend the method to a

balloon, or rather a sock, 8 inches in diameter and 4 feet long. A

field level of below 10- 7 gauss was obtained over most of the sock

volume. We are planning to set up an 8 inch facility of this type

during the next few months for the Gyro program.

The main laboratory dewar has two Mu-metal shields: one external, one

mounted on the inner of the two gas-cooled heat exchangers in the super-

insulation space of the dewar. The inner shield normally operates at a
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temperature of 40 K. For most of the present year we have had, in addition

to the Mu-metal shields, a superconducting lead shield wrapped on the outer

surface of the experimental chamber inside the helium well of the dewar.

The purpose of this lead shield has been to stabilize the field from the

Mu-metal shields; but we have found in practice that it does little good

and some harm, since it does not really stabilize the field, yet it prevents

us from making external field adjustments after it is superconducting. We

have decided to remove it for the next run: later on we shall, of course,

add a more satisfactory superconducting shield close in around the gyro, of

the kind to be used in the flight experiment. The final stage in our

present field reduction scheme is a set of three orthegonal coils surrounding

the gyro, through which currents are passed to cancel the residual field.

For our first low temperature run of the present reporting period, during

November 1973, only the inner Mu-metal shield was available. The field

-2
level then observed was 3 X 10 gauss. Since then we have in progressive

stages completed and annealed the outer Mu-metal shield, removed magnetic

materials from the helium well and experimental chamber, and added degaussing

coils and trim coils to the Mu-metal shields. To measure the field in the

experimental chamber we have put in a three-axis flip coil magnetometer

with a fluxgate probe. An important step was to make vacuum sealed

push-rods to manipulate the flip coil, allowing us to make field measurements

with the gyro suspended. By means of the shields and flip coil we now

easily get fields of 5 X 10- 4 gauss or less at the gyro. A limitation of

the present arrangement is that the flip coil is 4 inches above the

gyroscope, and we observe appreciable field gradients in the inner well.

Thus in the most recent run (October 1974) the field after one test was
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4 X 10- 4 gauss at the flip coil and fortuitously lower at the gyroscope,

being only 2 X 10- 4 gauss, as measured from the trapped flux signal.

To go lower we have developed a field cancelling procedure, which consists

in applying small known currents to each of the three bucking coils in

turn and observing the resultant trapped flux after heating and cooling

the gyro each time. By slow iterations the field is then brought down to

about 2 X 10- 5 gauss. It is hard to conceive of anything more tedious,

but the method works. However around the level between 2 X 10- 5 and

5 X 10- 5 gauss the results begin to be non-repeatable, with considerable

variations in the amount of flux trapped in the rotor in successive

identical cooldowns. We have guessed at. and ruled out, a number of

possible sources of this variability. The most likely explanation seems

to be thermoelectric generation of slowly varying fields in the neighbor-

hood of the gyro through temperature gradients in the various metal components

of the gyro support assembly. It is possible to get rid of such items, but

doing so requires major rebuilding of the apparatus which we do not want

to do just yet. Another possible cause, not yet disproved, is thermo-

electric currents in the coating of the ball itself. This would be much

harder to solve, because we would have to deposit a very thick niobium

film on the rotor, and at present we do not know how to do that. See

section G

Figure 1 illustrates gyro readout of the London moment and trapped

flux signals. The Cartesian reference frame i, j, k is centered on the

ball with axes parallel to the readout loop normals. The vector 0

represents an arbitrary spin axis along which lies the London moment
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vector ML , the trapped flux vector M is inclined at an arbitrary angle

0 . The trapped flux signal has a d.c. component MC = M cose and an

instantaneous a.c. component M = M sinG which links each loop in an
AC

amount depending on the direction cosines w , j , k of the spin axis

0 . Thus from the ratio of the a.c. signals only we can find the direction

of 0 up to an arbitrary sign in the components. Then given the value of

M determined by some other means we find e and hence the d.c. components

of the trapped flux MDC = MC , MC). This information is all that

is needed to determine the components of ML up to an arbitrary constant.

Since the quantities M , M , M vary in exactly the same fashion as

i Ij , ak we can make an unambiguous identification of ML if the ball

precesses. Such a determination is independent of polhoding action. De-

pending on the accuracy with which M can be determined we can compensate

for a relatively large trapped flux signal, provided we have a three axis

readout. With only one readout loop appreciable amounts of trapped flux

can only be compensated if auxiliary information is available on the motion

of 0. Figure 2(a) shows signals observed with a three axis readout system

and a large amount of trapped flux. Our interpretation of this data is that

the ball is precessing with its spin axis in the horizontal plane and the

angle e is remaining virturally constant. The repeating nulls in two of the

channels are about 900 out of phase, which can only occur if the spin axis

becomes normal to each loop in turn. The constancy of the third signal

indicates that the spin axis is coning about this loop normal and e is

almost fixed. Figure 2(b) shows the trapped flux signal during spin-up

as observed by the SQUID magnetometer in April 1974

The importance of reducing the field still further needs no emphasis.

However for the practical immediate problem of demonstrating London

moment readout we believe that with three axis data we could cope with

trapped flux signals even higher than these attained so far. In this sense

therefore we consider the trapped flux problem to be solved.
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D. GYRO READOUT DEVELOPMENT

The magnetometer readout system has to operate in the presence of 20 kHz

and 1 MHz gyro suspension signals, with varying temperatures in the dewar,

and in the presence of trapped magnetic flux in the ball. For satisfactory

performance, the readout should have an extremely stable null point; it

should be linear over a sufficient range; its scale factor should be

independent of dewar temperature and also of the signal frequency, at

least over the range of frequencies up to the highest seen from the third

harmonic of the trapped flux in the rotor, i.e. up to three times the

maximum bpin speed of the ball. The last desideratum is not an absolute

necessity, but it is helpful in sorting out trapped flux signals at the

present stage of development.

Throughout the year we have made steady progress in all these areas and

have also progressively simplified our system as we have gained a better

understanding of the various problems. Important technical accomplishments

have been the use of a "damping cylinder" to remove 20 kHz and 1 MHz magnetic

signals from the SQUID input, construction of a more reliable and stable

magnetometer feedback system, and development of an "rf level loop" to

provide the correct operating bias to the SQUID as the dewar temperature

changes and alters its critical current. Highlights in readout development

were listed in section A.

A large effort has been devoted to eliminating 20 kHz and 1 MHz interference

from the suspension system. The problem is now completely under control.

Last year's report described the steps taken to provide electrostatic

shielding between the leads and tank circuit. Once that was done it

became necessary to suppress the residual pickup, mostly magnetic in
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origin, at the front end of the SQUID. For the first run of the year,

in November 1973, we added a resistive filter to the SQUID input, which

reduced the 1 MHz interference to acceptable levels and reduced the 20 kHz

interference to a level that we thought could be handled with a six-

channel bucking circuit built for that purpose. The bucking worked, but

it was not very satisfactory. Adjustment of the bucking signals was

difficult; moreover proper adjustment turned out to be a function of the

ball position so that no single setting of the controls was right. As a re-

sult we decided to do more filtering of the signal before it reaches the

SQUID,to eliminate the need for 20 kHz bucking. There is a price to pay

for the extra filtering, in that a resistive filter generates noise in

the readout; however we have progressed through the year to a near optimum

arrangement in which the additional noise is not too serious.

The filtering is provided by a "damping cylinder", which forms a low

pass filter between the gyro readout ring and the SQUID. The readout

ring is connected to a coil around the outside of the cylinder; inside

the cylinder another coil is connected to the SQUID. The cylinder is

made of a conducting (not superconducting) material. At high frequencies

reaction currents flow around the cylinder and effectively shield the

interior coil from the signal. At low frequencies the reaction currents

are damped by the resistance of the cylinder, allowing low frequency

signals to pass. The damping cylinder has the second benefit of substantially

reducing capacitative coupling between the two coils. We have experimented

with damping cylinder bandwidths ranging from 5 kHz, which passed to

20 kHz pickup, to 5 Hz, which was far lower than necessary. The most

recent version has a 300 Hz bandwidth, which suits our present needs.
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Mechanically the damping cylinders consist of an 0.5 cm diameter

cylinder about 4.5 cm long and 0.025 cm wall thickness. The thickness

is varied both by machining and by electroplating. Metals used have been

brass or copper for the base, and lead and copper for plating. The present

damping cylinder is entirely copper to reduce thermoelectric voltages,

which are a source of spurious signals.

The damping cylinder is a dissipative circuit element, and as such,

introduces noise. We have investigated L C filtering schemes, but none

are feasible because circuit values are unwieldy. At present accuracy

levels the noise contribution of the damping cylinder is not significant;

in the future magnetometer improvements will allow an increase of the

damping cylinder bandwidth with a concomitant decrease in noise.

Another big effort this year has been in developing a new electronics

package for the SQUID magnetometer. As we worked with our prototype

feedback card we observed many areas for improvement. One was that the

critical current of the magnetometer continually drifts away from the

set point. When this happens the magnetometer loses lock unless the rf

drive level is adjusted. We developed a control loop that continuously

adjusts the rf level for best magnetometer operation. Incorporating

the circuit into the magnetometer called for major circuit modifications;

while we were about it we decided to make other changes based on our

experience with the prototype feedback card. We made improvements in

every circuit, and designed a new magnetometer control panel and card

rack for the new circuits. The card rack houses: 2 cards for the magneto-

meter feedback circuit, 1 card for the new rf level control loop, 2,

cards for the trapped flux bucking system designed last year (which is now
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integrated with the magnetometer), I card to control the rf box, and

1 power conditioning card. New features on the panel and simplified control

nodes make the magnetometer much easier to use than earlier versions. Over-

all dimensions of the new system are 19 inches wide, 7 inches high, 10

inches deep. Figure 3 illustrates the electronics package.

The new magnetometer was completed and checked out by mid-March 1974 and

has been used as a single-axis gyro readout ever since. Performance of the

rf level loop has been particularly encouraging. It increased the operating

range of the SQUID from temperature swings of 0.3 K to 1.5 K. The loss of

lock that did occur at the extreme did so only because the critical current

became too low or too high for normal SQUID operation. During the past

year we have made large and frequent changes of the dewar temperature,

while setting the field or spinning up the gyro and the rf level loop has

proved its worth. During a spaceflight the dewar temperature should remain

constant and this circuit probably will not be needed.

A problem with the rf level loop which has not bothered us in practice,

but which we have given a lot of thought to, is that one of the changes

in the feedback circuit to make the rf level loop operate reduces the

magnetometer slew rate by a factor of two. For present purposes the

magnetometer has far more slew rate than is needed, especially since the

damping cylinder protects the SQUID from high frequency of the damping

cylinder. We have designed some different rf level loop schemes that

prevent the degradation in magnetometer performance, but have not built

any of them yet.
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The changing heat loads and changing gas pressures in the experimental

chamber cause temperature changes which make the gyro readout drift. Besides

the dewar improvements described in section B, we took several measures to

stabilize the temperature of the SQUID and damping cylinder, including:

(1) heat sinking the SQUID enclosure to the inner well by a thick copper

post (2) use of indium between metal parts to improve heat transfer

(5) surrounding the SQUID enclosure by a heat shield connected to the bottom

of the inner well to lessen the effects of changing gas pressure on SQUID

temperature (4) addition of an active temperature controller first to

the SQUID enclosure and then to the gyro housing. These measures have

been quite successful. The results with the temperature controller were

surprising. It stabilized the SQUID temperature but we discovered that it

introduced thermal gradients and noise that actually degraded the temperature

performance of the readout. Some of the performance was recovered by the

improvements in heat sinking and shielding, but the real step forward came

through applying the SQUID temperature controller to control the gyro

temperature! We found that when the gyro temperature is stabilized the

readout drift is reduced to a level well below that needed to detect the

London moment. We do not yet have a complete interpretation of this

result, but it is nice to know what to do.

Early in the year we ran tests using the trapped flux bucking system with

the spinning gyro. The system worked well, reducing the trapped flux

signal at the SQUID as hoped. However in recent runs the flux trapped

in the gyro has been so low that the magnetometer can cope with it easily

without the trapped flux bucking system.
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To facilitate analysis of gyro readout data containing trapped flux, we built

a compensation filter for the magnetometer damping cylinder. Throughout

most of the year, the damping cylinder used had a bandwidth of 4.5 Hz,

which meant that the trapped flux signal was attenuated and distorted at

spin speeds about 1 or 2 Hz. Since quantitative knowledge of the trapped

flux signal helps in detecting the London moment signal, we built an analog

filter to compensate for the attenuation. With this filter installed the

magnetometer frequency response was flat to within ± 0.5 db between d.c.

and 100 Hz. However with the new 300 Hz bandwidth damping cylinder the

filter is no longer necessary.

Elimination of the damping cylinder compensator is part of a trend we have

established this year towards a simpler readout system.. We have already

mentioned elimination of the complex 20 kHz bucking and trapped flux

bucking subsystems. The resulting readout is more reliable and much

easier to operate.

After the first new magnetometer proved itself we built two more like it.

One is for a second axis of gyro readout to be used in the next run

(January 1975); the other is for the equivalence principle accelerometer.

With these additional units we have streamlined and formalized the checkout

procedures so that they are now routine.
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E. MAGNETOMETER SHAKE TEST, SURVEY OF COMMERCIALLY AVAILABLE SQUID

MAGNETOMETERS, AND POSSIBLE DEVELOPMENT OF A PRECISE WIDE ANGLE

GYRO READOUT APPLICABLE TO OTHER SPACE PROGRAMS

The point-contact SQUID magnetometer, which may be the most sensitive

commercially available magnetometer, has an appearance of great fragility.

Fears have often been expressed that such devices would never survive

the launch environment. Tests that we have performed this year show

that those fears are groundless.

In collaboration with the SHE Corporation and Ball Brothers Research

Corporation we have shake-tested a niobium, toroidal point-contact

weak-link SQUID manufactured by SHE Corporation. We performed routine

magnetometry tests before and after vibration tests at BBRC. To approximate

flight qualification figures applicable both to the four-stage Scout vehicle

and the two-stage Delta, BBRC took a composite of the vibration spectra

for the two vehicles, using the higher figures from each, and then, on

the basis of OSO flight experience formulated an estimate of the response

of the spacecraft taking into account amplification through structural

resonances. The qualification test consisted in applying 20 g accelera-

tions on'all three axes through the frequency range 50 Hz to 2 kHz,

together with a simulated shock test made by applying 30 g's for one

second at I kHz. The SQUID operated perfectly before and after the shake

tests. No changes in electrical performance were discernible beyond the

limits of measurement errors.
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The SQUID has been roughly handled and abused in our laboratory without

any qualitative change in its electrical characteristics. With respect

to its mechanical stability this SHE SQUID is flightworthy. It costs $900.

The SQUID used in the shake test is still on loan to Stanford. We have

built a test probe for it, which can be inserted in standard helium storage

vessels. We have saved much time in designing and testing magnetometer

electronics through using this probe.

To assess the current level of readily available technology we have made

a survey of commercially available SQUIDs. Three U.S. companies make

SQUIDs and associated electronics: SHE, SCT and Develco. The SHE SQUIDs

have point-contract weak-links; the others have thin film weak-links.

Indications are that the SHE device is the most sensitive by a factor of

two,. although definite comparisons are hard to make because specifications

have not been standardized. With the SHE unit the gyro readout would give

0.001 arc-second resolution in 104 seconds of observation time.

Magnetometers currently under development, in addition to the 10 GHz

system being developed at NASA Marshall Center and the University of

Alabama under the present program,include a Develco SQUID operating at

10 GHz which has a signal sensitivity at I kHz 100 times that of the SHE

unit,. but a d.c. sensitivity no better than that for the 30 MHz systems.

The d.c. sensitivity is what counts for gyro readout. Robert Buhrmann

of Cornell has an experimental SQUID system operating at 440 MHz that

does seem to have a d. c. sensitivity about ten times that of the SHE

unit. It is claimed to be stable. These advanced systems may be useful

fo the Gyro experiment.
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Not much study has been done of the long term drift stability of SQUIDs.

The only results we know of are those done by SHE, which yield drifts

-14
below 10 flux quanta (corresponding to 0.25 arc-second gyro readout)

during an overnight test in a dewar without magnetic shielding or

temperature control. The stability in such adverse conditions is

remarkable.

During the course of this year we have taken occasion to study the possibility

for applying the special properties of quantized flux in superconductors in

a high-precision all-angle version of the London moment gyro readout. Doing

so calls for the application of the "flux-counting" techniques that have

been developed in other applications of Josephson junction magnetometers.

We are of the opinion that a readout with a resolution of 24 bits/ quadrant

may be feasible, which corresponds to an absolute angular precision approach-

ing 0.01 arc-second over the entire range. This extraordinary figure, which

can only be discussed because of the absolute character of the quantum of

flux,. should be compared with the outside limit of 17 bits/quadrant that

applies to conventional angular encoders. Development would be a major

undertaking but it may be of long-term interest to NASA for programs such

as the Large Space Telescope.

Both a high accuracy limited range readout and an all axis, full range,

moderate accuracy readout may be useful to the Gyroscope experiment.

The latter would be of value in the second gyro test facility (see section H )

We are continuing to study the feasibility of an all-axis readout.
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F. ELECTRONICS AND INSTRUMENTATION FOR LABORATORY EXPERIMENT

Most of the electronics work on the laboratory experiment has been

described under section B through E above; various other small projects

were completed to help make the experiment run more smoothly. They include

gyro and magnetometer temperature sensing bridges; a three axis magnetic

bucking circuit for nulling the residual field around the gyro; a temperature

servo which controls cooling and warming of the gyro at a predetermined rate;

and most recently a servo amplifier to drive a piezoelectric valve which

controls the exchange gas used to keep the experimental chamber cool. The

last item will be incorporated during the next run into a servo system

controlling the pressure of the inner well.

The Stanford gyro suspension system built last year has proved its worth.

It had three failures during a year of hard use; two of which were induced

by accidental mishandling on our part. However we continue to observe

occasional erratic performance of the suspended gyro, sometimes leading

to shutdowns or rapid ball motions with no real known cause. We will

continue investigating these effects as new ideas or tests are thought of,

for example non-linear effects of the suspension itself.

Some work was done on a new power supply for the suspension system, but we

have had trouble with manufacturers in replacing unsatisfactory batteries

and the issue is not yet resolved to our satisfaction.
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The Astrionics Laboratory at NASA Marshall Center manufactured a run of

12 hybrid a.c. amplifiers for us, which proved to be very successful.

We plan to use these as spares for our suspension system as well as for

other future needs. They are now working on a hybrid demodulator driver

circuit. Prototypes should be available early in 1975.

G. SPUTTERING WORK

Not much sputtering was done in the first part of the year owing to

shortage of funds. However, through the generosity of the Research

Corporation, which provided a Grant to cover 50% of F. J. van Kann's

salary for one year, we were able to resume a strong sputtering effort

in June 1974. We also received a small contract from Honeywell Incorporated

to sputter electrode test pieces for them to use in one of their gyro

development programs. This rare instance of an industrial company requesting

a university laboratory to provide research services followed our earlier

success in developing high quality sputtered electrodes under the present

Grant. Breakdown voltages with the sputtered electrodes were approximately

twice those achieved with conventional plated electrodes. See also a letter

from C. W. F. Everitt to N. Roman dated May 7, 1974.

We have continued general sputtering services in support of the laboratory

experiment. Work in this area has included coating the new gyro rotor

received from Marshall Center in June 1974 ; repair of some damage to the

other gyro rotor after the July run; and the beginning of an effort to

sputter superconducting niobium on to the electrodes of the ceramic gyro

housing, in order to reduce heat dissipation from the suspension currents.

Another task was to sputter niobium on quartz tubes, 5/8 inch diameter and



5 inches long, which are being used in an experiment to determine their

flux trapping properties.

Under the Honeywell contract we performed sputtering and electrical

breakdown tests on several ceramic and stainless steel substrates

prepared by Honeywell. High voltage tests on several of the samples

gave excellent results; some were found to withstand 6 kV/mil (peak to

peak) before breakdown. The test pieces together with the Stanford test

jig and a preliminary report were dispatched to Honeywell on August 20.

Through special support from NASA Marshall Center we are in process of

obtaining a new sputtering system at a very competitive price. We have

devoted careful attention to choosing the most desirable features for the

system. Our principal wish has been to sputter films of both metals and

dielectrics with greatly improved purity and uniformity, at considerably

higher rates and with lower heat dissipation in the substrate than formerly.

We found out that such a system could be assembled largely from commercially

available components. Specifications were communicated to E. Urban at

NASA Marshall Center who initiated the purchase.

The target assembly has already been delivered; the pumping system and vacuum

gauges are expected in late December. The only components not commercially

available are the vacuum chamber and some of the internal fixtures for it.

Plans and specifications for the vacuum chamber have been sent to Marshall

Center; a contract for constructing it should soon be awarded to an outside

company. We have begun constructing several internal fixtures at Stanford;

a new gyro rolling jig is ready for final assembly.
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H. SECOND GYRO TEST FACILITY

A six foot long, 12 inch diameter helium dewar has been ordered from

Cryogenics Associates and is scheduled for delivery early in December.

The dewar is a standard model .SD-12 with some special modifications

according to Stanford specifications to reduce helium boil off and

increase the hold-time. We have designed Mu-metal magnetic shields for

the test facility; plans and specifications have been sent to several

companies for quotation.

We have begun design of the gyro chamber for the new test facility.

On April 22-25, 1974 J. B. Hendricks of the University of Alabama,

Huntsville and NASA Marshall Center spent four days at Stanford reviewing

the designs of the equivalent test facility which he is building up at

Marshall Center. The two groups are coordinating the designs as closely

as feasible to make it easy to exchange gyro tests between-Stanford and

NASA Marshall Center.

J. QUARTZ GYRO HOUSINGS

Two Honeywell quartz gyro housings are in different stages of completion.

They are commonly referred to as Quartz Gyro Housing No. 2 and Quartz Gyro

Housing No. 3. The original Housing No. 1 was broken by Honeywell in

April 1972. Housing No. 3 is a replacement being fabricated by Honeywell

at Company expense.
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Housing No. 2 was delivered to Stanford in June 1972. The design was in

most respects similar to the final design, but in order to reduce the

risk of manufacture we decided to compromise in one respect and have it

made without raised lands around the spin up channels. We took this course

in light of earlier difficult experiences at Honeywell. Electrodes were

sputtered on the housing at Stanford in mid 1973 and the parts were shipped

to NASA Marshall Center for lapping of the electrode surfaces before completion

of the final sputtering processes. A slight imperfection was noticed on

one of the electrodes. In December 1975 we held a review with W. Angele and

R. Decher of NASA Marshall Center on the status of this and other gyro.

housing work. Mr. Angele had then conceived a new method for fabricating

gyro housings in which the electrodes would be recessed below the primary

reference surface by means of a special lapping machine. This procedure

was conceptually similar to the method of "plunging" electrodes tried un-

successfully by Honeywell in 1968, but the new lapping machine showed great

promise for doing the job successfully. At the review in December 1973 we

decided that the new recessing method might well be the ideal approach to

fabricating the gyro housing, and at the same time provide the crucial step

towards arriving at a commonly acceptable gyro design embodying the best

features of the Stanford and MSFC designs. Accordingly we left Quartz Gyro

Housing No. 2 and Marshall Center to recess the electrodes on it. Unfortunate-

ly a succession of delays and difficulties, coupled with Mr. Angele's retire-

ment from NASA and the reorganization at Marshall Center, have prevented any

work being done on the Stanford Gyro Housing for the past eleven months, so

at present we are at rather an impasse. Work on recessing electrodes has

been proceeding on the MSFC Gyro Housing. We are giving careful consideration

to the situation and will communicate further with NASA shortly.
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The first stage of manufacture of Quartz Gyro Housing No. 3 was completed

by Honeywell successfully in June 1974. Figure 4 illustrates the partially

finished envelope parts. The next step is to be deposition of electrodes

and completion of the spin up channels. During the present year we have

taken the opportunity to reconsider the methods for forming the raised

spin up lands. The procedure we had intended to follow had been that of

quartz inserts, which had been developed by Honeywell more or less success-

fully on the destroyed Quartz Gyro Housing No. 1. However in the course

of our sputtering work over the last three years we have gained a large

amount of experience that leads us to look once more at three methods

partially tried earlier at Honeywell but rejected, namely

i) metallized ridges made from sputtered or electroplated copper

ii) metallized ridges fo layered construction: titanium, aluminum, copper

iii) sputtered quartz.

The ceramic housing we have been using routinely for the past few years has

metallized edges. On both ceramic and quatz housings the ridges are about

0.002 inches high above the spherical surface of the housing; they need to

conform to the sphere to within A 50 microinches or about 2 % of their

heights.

The obvious objection to metallized edges is that they will tear away from

the quartz on cooling because of differential contraction. This was what

Honeywell found. On the other hand we have been able to coat a two-mil

thick copper layer on the gyro ball with no ill effects, so the story is

not quite as simple as that. Early in the year we experimented with

sputtered copper on a quartz test hemisphere, and found as Honeywell had

done that the metal cracked away in places after cooling. However the

experience with the gyro rotor suggests that there still may be possibilities
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of getting arong that effect.

Sputtered quartz would avoid the differential contraction. Considerable

progress has been made in quartz sputtering technology since 1969 to 1970

when Honeywell tried experiments on this method. The difficulty then was

that the quartz came down with a very irregular granular structure, and

deposition was exceedingly slow. In the past two years or so, very high

rate sputtering systems have become available, capable of depositing quartz.

As part of the new sputtering system described in section G, we have ordered

a quartz target. There are three main advantages in using the system:

(1) the deposition rate for quartz should be 50 to 100 times that in con-

ventional systems, reducing the time from about 120 hours (as found by

Honeywell) to about 2 hours; (2) the increased rate reduces likelihood of

contaminating the film; (3) the plasma of the new sputtering head is well

confined, allowing cooler substrates throughout deposition. This will

allow better mask definition, as well as lower impurity levels and much

less stress in the deposited film. We plan to start experimenting with

quartz sputtering in the Spring of next year.

K. FIXED BASE SIMULATION, STAR/COLLIMATOR UNIT, PREPARATIONS

FOR ALL-UP TESTS OF THE GYRO-TELESCOPE PACKAGE

We have described several times our plan for all-up testing of the experiment.

Briefly the idea is as follows. The entire gyro-telescope package is placed

in a gimballed fixture inside our existing 30 inch non-magnetic dewar, which

is then tilted to an angle of approximately 37' to align it with the Earth's
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polar axis by means of a large external gimbals mounted on a concrete

pad in the main basement laboratory. External reference for the telescope

(or for a mirror on the gyro package) is provided by a star/collimator

unit mounted on a second concrete pad. Pointing servos drive actuators

on the inner gimbals to keep the telescope aligned with the beam of light

from the star unit, and a data instrumentation system subtracts and processes

signals from the gyro and telescope readouts.

The most important step foward this year has been construction of the star/

collimator unit. The unit comprises a bright point source of light, a 200

inch focal length off-axis parabola mirror, tipping plates, and sundry

other optical elements, in an eleven foot high evacuated chamber. The

instrument produces a 6 inch or 8 inch diameter parallel beam of light,

which is reflected by a plane mirror at the upper end of an angle of 370

down in the dewar. Thus the instrument serves as a North Star simulator.

Separate optical attachments allow it to be adapted as an autocollimator.

A fabrication contract was issued to Optical Instrument Design Company

on May 7, 1974. Construction of all the parts is now finished. An

acceptance test will be conducted at the West Covina plant in January 1975.

Delivery to Stanford is scheduled for February 10, 1975. After delivery

the unit will have to be set up and aligned in our laboratory by D. E.

Davidson. We tentatively schedule commencing alignment in April 1975.

Our work on fixed base simulation has also been described in earlier Annual

Reports. The aim has been to develop on a simple test stand methods of

evaluating gyro and telescope performance which get round the difficulty

that the designed performance of the instruments themselves is better

that that of any available test instruments. In essence what is needed is

to develop information processing techniques which use the gyro and telescope



to evaluate each other, recognizing that the noise sources in the two

instruments have quite different spectral compositions.

During earlier reporting periods a Fixed Base Simulator was built, partly

under the present Grant and partly under the Air Force Supplement (now

terminated) to Develop Associated Control Technology. The Relativity Gyro

was simulated by two surplus Atlas guidance system gyros, the telescope by

means of a precise autocollimator designed and built at Stanford. The gyro s

were mounted on a surplus Minuteman I platform; much of the electronics from

the Minuteman guidance system wad available, and with the addition of

several key amplifiers we were able to combine the nominally 400 Hz Atlas

instruments with the 4,000 Hz Minuteman I equipment to make a workable

test bed.

Data from the autocollimator and gyros were interesting in themselves,

revealing the types of differences to be expected from the two types of

instrument. The Atlas two degree of freedom gyros have a ball bearing

spin motor which generates sharp vibration spikes in the gyro performance

spectrum. Using autocorrelation and cross-correlation techniques, we were

able to identify with surprising clarity, not only the individual noise

characteristics of the instruments but also to identify when disturbances

originated outside the instruments. One interesting example was in the

bearing characteristics of the Minuteman platform. For very small angle

deflections the ball bearings behaved more like a spring restraint than a

bearing. We observed and modelled highly non-linear amplitude characteris-

tics. The non-linear amplitude dependence emphasizes the importance of

operating instruments at the level of motion and disturbance that will

be used in the final application.



The numerical programs and interpretation of data obtained on .the fixed

base simulator form an important library and body of experience applicable

to the Relativity instruments. We have already made use of two of the

computer programs in transcribing data from the 3-axis fluxgate readout of

the Relativity gyroscope from fm recording analog tapes into a convenient

digital form for use on the Sigma 5 computer. We are also giving considera-

tion to applying in gyro tests the Fast Fourier Transform techniques and

PSD (power spectral density) analysis developed for the simulator.

An account of the fixed base simulation work is given in the Ph. D. thesis

of D. L. Klinger "Error Modeling of Precision Orientation Sensors in a

Fixed Base Simulation" (Stanford University Aero-Astro Department Report

SUDAAR No. 481 July 1974).

L. REVIEW OF STATUS AND RATE OF PROGRESS

We have taken the opportunity while writing this Annual Report to survey

progress over the past 12 months. In the 1973 Request for Continuation

submitted to NASA on April 30, 1973, we presented a flow diagram for the

development of the experiment, and a schedule based on the proposed funding

rate of $410,000 for the 12 month.period of the Grant renewal. In fact the

funding for October 1, 1973 to September 30, 1974 was $250,000 under the

regular continuation Supplement 17, and $70,000 under special Supplement 18,

making a total of $320,000 or 77% of the proposed amount.
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We were able to cut a few corners to help maintain the pace, but progress

in certain areas has been slower than we had hoped. The biggest delay

has come because the final phase of research in developing the first

London moment gyro readout has proved decidedly harder than we had

expected. The temperature dependent magnetic fields in the dewar have

added greatly to the labor in attaining field levels comparable with the

London moment at 30 Hz spin speed. This problem is now partly under control.

In a few areas progress has been better than expected. Thus we had not

anticipated obtaining this year a point-contact SQUID magnetometer that

would withstand the launch environment.

The flow diagram prepared in April 1973 had a total of 81 critical points up

to analysis of data from the final flight experiment, of which 60 covered

the period up to freezing of flight hardware. We reviewed the situation

first on July 31, 1973 and then again on November 30, 1974. By July 1973

there had been substantial progress on 10 of the 60 items (with none complete)

and slight progress on 15 other items. By November 1974 two items had been

dropped as no longer necessary, there had been substantial progress on 20

others, with 6 complete or nearly so, and slight progress on 17 further items.

The original view at the full funding level had been a three-year effort

before freezing flight hardware, Copies of the flow diagram with the progress

data will be made available upon request.

Preparation of the Proposal in response to AO#6 gave the opportunity for a

useful reassessment of the management plan and pricing of a flight program.

The flight proposed under AO#6 is a simplified version of the original Delta

mission defined in the first Ball Brothers Mission Definition Study. We

thank Ball Brothers for assistance in preparation of the AO#6 proposal.
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It was gratifying to discover that despite the 10% per annum cost inflation

since 1971 pricing could be held down to a total of $23 million 1974 dollars,

with many items at levels near or in a few instance even below the 1971

figures. The cost savings came about through the combined effects of progress

in the laboratory and the following sources: (1) simplification of procedures

in documentation and quality control from NASA guideline HB 5300, (2) use of

a protoflight approach, (3) a spares plan based in most cases on carrying

critical piece parts, replacement modules or plug-in circuit boards rather

than comple "black boxes", (4) allowance for progress on key items of ex-

ponent hardware since 1971, (5) allowance for progress in electronic piece

parts (integrated circuits), and greater selection of off-the-shelf com-

ponents (black boxes).
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THE EQUIVALENCE PRINCIPLE ACCELEROMETER

Work on the Equivalence Principle Accelerometer was started under

Grant 05-020-019, but during the current reporting period it has been

supported entirely by three other Contracts: MIT subcontract on NASA

Grant 22-009-735;a Grant from the CalTech President's Fund PF 066; and

related support from Johns Hopkins Applied Physics Laboratory Contract

600054. For continuity, and because of the high interest of the Equivalence

Principle Experiment to NASA we shall continue reporting progress on it along

with the Gyro Experiment.

A very large amount of progress has been made on the experiment during the

past year. At the time of the last Annual Report (November/December 1973)

only the central assembly of the experiment existed, and that was incomplete.

Work has proceeded in two main directions: construction of the mechanical

portions of the apparatus, and design and construction of a control loop

and subtraction network for the test masses.

Construction of the mechanical hardware proceeded in stages. From

January to April 1974 the levitation coils were wound, cast in place and

tested. The inner levitation coil was completed quickly; however, we

experienced considerable difficulties in constructing the outer levitation

coil. The filled plastic backing for the coil did not stick properly to

the copper cradle. As a result we ultimately decided to make do with a
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coil that had a deviation fron an ideal cylinder of L 0.003 cm

instead of : 0.0003. The consequence will be a loss in signal/noise

ratio for the apparatus: we will try to do better later.

A dewar stand of adequate mechanical properties was started in April and

completed in July; it serves as a vibration isolation support for the

dewar and magnetic shield set. A large portion of the dewar probe was

also completed during this period. Design and construction of some super-

conducting control transformers and peripheral apparatus occupied several

months. The final assembly was completed early in October.

Simultaneously with the above work we went ahead with design and construction

of the controllers and subtraction network. Estimates of parameters for the

test masses and control coils helped define the control problem early in

the year. We soon found seismic noise to be a potentially serious problem.

Accordingly we made a detailed study of the seismic noise background at the

experimental location, made modifications to the design of the dewar stand,

and went through several iterations in controller design. The existing

vibrations isolation now appears to be just about adequate.

The data subtraction problem consists in trying to read out the difference

incontrol effort to 1 part in 10 8 in order to obtain a sensitivity in

-11the Eotvos ratio of 10-  . Extensive analysis has shown that this can

be done over a limited temperature range if the control gains are matched

initially to 1%. We believe the matching can be provided by changing the

standing currents in the control coils using a superconducting transformer.

The design of the superconducting control transformers was considerably

complicated by the need for extra windings to provide this matching function.

The data subtraction system was conceived as an analog/digital system.
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Only the analog portion is being built at present as we have not yet

obtained a digital data acquisition and processing system. Recently we

have worked on an interim visual digital readout system using analog/

digital converters already purchased. Much of the electronics construction

for both the controllers and the subtraction system has been done.

The main apparatus was cooled down in October. We soon found a number of

minor problems: vacuum system leaks, inoperable heat switches, and broken

wires. No fundamental problems showed up, but the lesser problems were

sufficient to prevent taking any data on the actual operation of the

levitation cradles or controllers. The dewar had a satisfyingly low boil

off rate, only about 0.28 liquid liters of helium per hour, allowing about

4. days of operation with 50 liters of helium above the top of the experiment.

At present we are refurbishing the apparatus for a second run. We are

making various modifications for greater ease in assembly and disassembly

as well as even lower helium boil off.




